Santa Fe Meeting on Physics with the Long-Baseline Neutrino Experiment

Christopher Mauger
Los Alamos National Laboratory
25 April 2014

Welcome to Santa Fe

- Welcome to Santa Fe!
 - please pay
- We are at altitude (7000 feet)
- Workshop focus LBNE
 - Medium-energy neutrino physics
 - Long-baseline neutrinos
 - Atmospheric neutrinos
 - Supernova neutrinos
- Discussion encouraged
- Dinner tonight last call!

The Long-Baseline Neutrino Experiment

- LBNE consists of
 - an intense neutrino beam at Fermilab
 - near detector systems at Fermilab
 - a 34 kt liquid argon time-projection chamber (TPC) at Sanford Laboratory at 4850 foot depth – 1300 km from Fermilab
- When constructed, LBNE will have the longest manmade baseline of any neutrino experiment

Scientific Motivation

- Neutrino oscillations requires physics beyond the standard model
- Detailed studies of neutrino oscillations will allow us to answer important scientific questions:
 - What is the neutrino mass hierarchy?
 - Do neutrinos violate CP symmetry?
- High precision studies of neutrino oscillation phenomena allow us to test the three-flavor paradigm
 - Do sterile neutrinos exist?
 - Are there non-standard interactions (NSI)
- Building an experiment to address these issues with accelerator neutrinos enables much more science

Scientific Motivation

- Physics enabled by intense neutrino source and high-precision near neutrino detector
 - Precision electroweak tests
 - Searches for high Δm^2 neutrino oscillation physics
 - Searches for ``dark photons''
- Physics enabled by a large, underground far detector
 - Atmospheric neutrino studies
 - complementary oscillation physics studies
 - indirect WIMP searches
 - astrophysical neutrino searches
 - Burst supernova neutrino studies
 - complementary oscillation physics studies
 - supernova physics
 - Baryon number violation
 - SUSY, Grand Unified Theories
- And many others, see arXiv:1307.7335 LBNE whitepaper

Layout on the Fermilab site

Layout of LBNE: Neutrino Beam

- Conventional neutrino beam from charged pion decay beam power of 1.2 MW
- All permanent fixtures rated for 2.3 MW operation

Cross-section of NDS Layout

- Two sets of detector systems:
 - Measure muons after the absorber
 - Measure neutrinos

Measurements of muons post-absorber

$$\pi^{+} \longrightarrow \mu^{+} + \nu_{\mu}$$
 $\circ E_{\nu} = (0-0.43)E_{\pi}$
 $\circ E_{\mu} = E_{\pi} - E_{\nu} = (0.57-1.0)E_{\pi}$

Cherenkov Detectors:

measure all muons above a variable threshold constrains muon spectrum (correlated with E_x) Michel Decay Detectors:

measure muons that stop at a given depth in material constrains muon spectrum

Near Neutrino Detector

- High precision straw-tube tracker with embedded high-pressure argon-gas targets
- Philosophy
 - make high-precision, highstatistics measurements of neutrino interactions with argon (far detector target nucleus)
 - measure inclusive and exclusive cross-sections to build and constrain models to predict the event signatures at the far site and correlate them with true neutrino energy
 - make detailed studies of electron (and muon) neutrino and anti-neutrinos separately

Liquid Argon Time-Projection Chambers (TPCs)

MIP dE/dx = 2.2 MeV/cm \rightarrow ~ 1fC/mm @ 500 V/cm \rightarrow ~1 MeV/wire

Liquid Argon TPC Performance

Far Detector Layout

34kt fiducial mass LAr TPC at 4850'L (1.5km) 50kt total Ar mass

